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Review of Lecture T

¢ For the case where PDFs are known, there iIs no need for ML — but it’s rare to
truly be in that situation.

e ML can be viewed as simply a large and complicated optimization problem.
All of the same pitfalls—and solutions—to overfitting a less opague model also
apply to training ML algorithms. Hopefully these points were reinforced by the
tutorial example.

e [he use of ML has become ubiquitous in HEP. Many common classification
and regression tasks already performed by ML-based algorithms, including in
the real-time (trigger) event-classification systems.

e A key to ML usage is data-driven characterization of the performance,
typically done using standard candle calibration samples. Of course, like
anything else, you should always be skeptical—and use data to prove that
things are working (to the desired CL).

¢ Physics-aware loss functions are a powerful way to use ML in situations
where out-of-the-box algorithms fail.
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Review of Lecture T

The NN is trained using gradient descent to minimize loss. The end result is just a
function; it’s simple to explore its behavior.
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You can enforce desired
behavior in the loss
function, NN design, etc.
E.g., LHCb’s trigger ML is
forced to asymptote its
treatment of high-mass and
long-lifetime candidates at
the GeV and ps scales.
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Deep Learning

Now let’s look at (at least partially) skipping the feature-engineering step. How
well can we do using deeper networks and/or special architectures?
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Shallow Learning

Yesterday we focused on using domain knowledge to engineer input features.

:
g

We physicists have the SM, detailed detector simulations, decades of successful
experimentation, etc., so we do a good job of dimensional reduction in our heads.
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Deep Learning

In principle, we could skip the human-led step; however, in practice, even the mass is a
rather odd manifold in a high-dimensional feature space (i.e. difficult to learn).

Adding more layers (making the network deeper) makes it possible, in principle, for the
machine to learn to form complicated features from low-level unorganized inputs — but to
what extent does this work? What architectures are best suited to what types of learning”?
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Deep Learning vs Deep Thinking

Does a deep NN really need our help”? Does it need high-level features like invariant masses,
or can it just learn the physics itself from the 4-vectors (given examples)?

Baldi, Sadowski, Whiteson [1402.4735]
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The DNN is able to learn all that it needs in this case, as providing high-level features results
INn N0 gains — In fact, the DNN using low-level features outperforms any selection based only
on high-level features.
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Latent Spaces

Each hidden layer in a DNN can be viewed as a latent-space representation of the data,
rather than just some intermediate step in a complicated matrix multiplication.

.

From this perspective, we are now trying to design the algorithm to learn useful/meaningful
latent spaces—which is what human-led feature engineering does, and what science does In
generall (We don’t just use data to learn to improve task performance, we try and gain

knowledge and understanding about nature from it.)
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Convolutional Neural Networks

CNNs are deep feed-forward NNs whose architecture was inspired by the visual cortex. They
have been used to solve a variety of problems, including many in image-recognition.
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The neurons in a CNN look for local examples of translationally invariant features. This is
done using convolutional filters to locate patterns producing maps of simple features, then
build complex features using many layers of simple feature maps.

Mike Williams



Convolutional Neural Networks

The use of reduced receptive fields for the neurons—who also share weights—in the early
layers provides both translational invariance and makes training a tractable problem.
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A major advantage of CNNs is that they learn the convolution filters themselves, i.e. these do
not need to be provided (known a priori). Notice how this explicitly looks like dimensional
reduction via feature extraction followed by a simple fully connected optimization function.
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Convolutional Neural Networks

CNNs have demonstrated super-numan performance in many computer-vision tasks.
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The ability to not just classify an entire image but to segment the pixels into different sources
should immediately sound useful for HEP reconstruction tasks.
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CNNs for Neutrinos

The first published measurement in HEP to use a CNN is from NOvVA [1703.03328].

Neutrino experiments consist of large
homogeneous volumes; therefore,
CNNs can be applied naturally here
(e.g. spatial translational invariance
holds).

Each event consists of two 2-D
projections, and each pixel is really
the energy response in a cell.

Objective is to categorize events,
e.g., 4 categories are shown at right.

Image from A Radovic.
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CNNs for Neutrinos

The NOVA CNN, which is similar to the first GooglLeNet CNN,
splits each 2-D projection of a NOVA event into a separate
seqguence In the early layers, then concatenates their outputs
near the end.

The objective is to categorize events as (e,u,T)X(QE,RES,DIS),
or NC, or cosmic.

Built in CAFFE framework and utilizes softmax output (since
this is a multi-class problem).

The NOVA CNN improves in performance over previous PID
algorithms by an amount equivalent to collecting data for an
additional 30% exposure time.

Aurisano, Radovic, Rocco, et al [1604.01444]
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CNNs for Neutrinos

There are many ways to study what the CNN has learned. One example shown here.

Slide below from A Radovic

True ve CC True NC

5x5 block of cells 5x5 block of cells
removed to make each removed to make each
alternative PID output alternative PID output
for the occlusion test. | for the occlusion test.

l |

[] []

l l

80 80

True ve CC True NC

more ve like

i \ We can trick the v, ID output by

The ve ID output is by far most removing the parts of the start
sensitive to the electron track. and end of the track which don’t

B / look like a clean muon track.

no change
no change

Mike Willia




CNNs for Neutrinos

MicroBoone has managed to train CNNs that can locate neutrino interactions within an event
(draw bounding boxes), identify objects and assign pixels to them [1611.05531].
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Similar work using CNNs ongoing at collider experiments in the area of jet physics (see
[1511.05190], [1603.09349],...).

Mike Williams 15



GANS

Generative adversarial networks (GANS) are a way of training a generative model to produce
realistic data taking noise as input by pitting it against an adversary.
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During training, the discriminator learns to better classify real and fake data, while the
generator learns to better fool its adversary.
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More (non-HEP) GANSs

This is not a real person, but rather a machine’s hallucination!
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More (non-HEP) GANS
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CALO GAN

Paganini, de Oliveria, Nachman
[1712.10321].

Monte Carlo simulations in particle physics are based on well-known/well-modeled
microphysics and the concept of factorization. GEANT is an amazing tool — but it is way too
slow and prohibitive for generating large enough MC samples for future experimental runs.
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CALO GAN can generate the reconstructed CALO image using random noise, skipping the
GEANT and RECO steps — making it 10,000 x faster than GEANT! (Every LHC experiment
is studying GANSs for HL-LHC MC generation.)
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Adversaries & Loss

Yesterday we talked about physics-aware loss functions and de-correlating from some
unknown inputs. What if we don’t know how to write a loss function for what we want?

Louppe, Kagan, Cranmer [1611.010406]
Shimmin et al [1703.03507]
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We can learn one!l Now the adversary tries to guess nuisance parameters given the output of
the classifier. Training drives the classifier response to be independent of these features—
making it robust. (Shown to increase the sensitivity when systematics are considered.)
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(Gaussian Processes

What if it's not possible to calculate the gradient of the loss function, and therefore, a ML
algorithm cannot be trained using gradient descent (e.g. tuning hyperparameters in a NN)?

The first few steps of any rigorous explanation of Gaussian processes seem like it's the least
useful idea ever — but it’s actually very useful. I'll try and explain it like a physicist.
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We want to learn a function, but we don’t know it’s functional form. Using a Bayesian non-
parametric approach gives us the flexibility we need to describe this unknown function. What
do observations tell us about the underlying model? (Should be a familiar question!)
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(Gaussian Processes

Any physicist should immediately think about the relevant scales in the problem. The plots
below show the simplistic 1-D case. What is the smallest length scale in x? Answering that
tells us how “wiggly” the function can be. (l.e., if we know the length scale, we know how
much information nearby observations provide about the function at an unobserved location.)

same data, different length scales
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Assuming that we don’t know the relevant scales (especially true in high dimensionality for
black box type problems), we’ll have to learn them from the data — not just the current
observations, we can collect more data.
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Bayesian Optimization

Start from prior for objective function, treat evaluations as data and produce a posterior used
to determine the next point to sample (balances exploration vs exploitation). One of the main
assumptions is that observations are expensive, so we want to find the optimal point using
the fewest possible observations.

Posterior
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Pythia Tune

We considered tuning 20 parameters of Pythia using Monash MC as experimental data using
BO to perform a closure test. BO quickly tuned the Pythia and was able to find the true input
parameter values within the quoted uncertainties.

llten, MW, Yang [1610.08328]
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Converges took at most 50*n(parameters) iterations assuming no prior knowledge about the
parameter values — and < 10*n(parameters) iterations using sensible ranges.
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HEP Al

Should we just send the raw data straight to some Al? First issue, we are constantly
reformulating the problem; i.e., we don’t a priori have a complete list of tasks to perform or
guestions to answer (maybe Al can ask the questions?).

TERYY

Beyond this, our current approach has advantages: it's modular, making the outputs
reusable (efficient), interpretable and easily validated, etc. If we are going to radically change
strategy, we'd like to maintain these features—and whatever we do it must work in real time!
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6-12 August 2018
University of Oxford

Overview
Timetable

School information
.. Speakers
L. Social programme

. Application Process
~ and Important dates

.. Committees

. MLHEP participants
"~ feedback

Local information

L. Visa

. Venue

. Accommodation
L. About Oxford

L. Food and drinks
L. Getting to Oxford

Registration fee
Application Form

Frequently asked
questions

Competition

™ mlhep2018@yandex.ru

The Fourth Machine Learning summer school organised by Yandex School of Data
Analysis, Laboratory of Methods for Big Data Analysis of National Research University Higher School
of Economics and University of Oxford will be held in Oxford, UK from 6 to 12 August 2018.

The school will cover the relatively young area of data analysis and computational research that has
started to emerge in High Energy Physics (HEP). It is known by several names including “Multivariate
Analysis”, “Neural Networks”, “Classification/Clusterization techniques”. In more generic terms, these
techniques belong to the field of “Machine Learning”, which is an area that is based on research

performed in Statistics and has received a lot of attention from the Data Science community.

There are plenty of essential problems in high energy physics that can be solved using Machine
Learning methods. These vary from online data filtering and reconstruction to offline data analysis.

Students of the school will receive a theoretical and practical introduction to this new field and will be
able to apply acquired knowledge to solve their own problems. Topics ranging from decision trees to
deep learning and hyperparameter optimisation will be covered with concrete examples and hands-on
tutorials. A special data-science competition will be organised within the school to allow participants
to get better feeling of real-life ML applications scenarios.

Expected number of students for the school is 50-60 people. The school is aimed at PhD students
and postdoctoral researchers, but also open to masters students.

Pre-requisites for participation

e Python programming experience

(e.g. http://nbviewer.jupyter.org/gist/rpmuller/5920182, https://www.codecademy.com/tracks/python)

e interest and/or background in HEP
e laptop with WiFi connectivity

Upon completion of the school participants would be able to

e formulate a HEP-related problem in ML-friendly terms;
select quality criteria for a given problem;
understand and apply principles of widely-used classification models (e.g. boosting, bagging,
BDT, neural networks, etc) to practical cases;
optimise features and parameters of a given model in efficient way under given restrictions;
select the best classifier implementation amongst a variety of ML libraries (scikit-learn, xgboost,
deep learning libraries, etc);
understand and apply principles of generative model design;
define & conduct reproducible data-driven experiments.
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Data,Science @ LH Machine Learning for Jet Physics

_ 11-13 December 2017
(9:E1R3NNovember 2015 Lawrence Berkeley National Laboratory
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Overview Mon 11/12  Tue 12/12 Wed 13/12 | All days

Overview S e EP@FNAL is the third in a series of workshops dedicated to Data Science in High Eng

Call for Abstracts

View my Abstracts 2nd IML Machine Learning Workshop

Reading materials Submit Abstract Experimental/Practic...

Program

9 Apr2018,09:00 = 12 Apr 2018, 20:00 Europe/Zurich
Q@ 500-1-001 - Main Auditorium (CERN)

Speaker List Timetable

Registration Contribution List Mon 11/12
Author List Lorenzo Moneta (CERN), Markus Stoye (CERN), Paul Seyfert (Universita & INFN, Milano-Bic

Participant List

) Book of Abstracts . Steven Randolph Schramm (Universite ce Geneve (CH))
Videoconference Rooms ’
Registration

Poster L. Registration Form Description Inter-experimental Machine Learning Working Group Workshop on Machine Learning will be held between April 9 and 11, 2018. There will also be a

Registration - i
Network Connection Participant List g full-day hackathon on April 12.

Request Forms g i .
q 2-100, Lawrence Berkeley Nation, Videoconference 3 |M|__MachineLeaming_WG m . .
CERN ACCESS INFO : Welcome and Logistics Rooms
2-100, Lawrence Berkeley Nation i i
Registration

Orientation . Jets and ML in Theory 4 ML Topical Machine Learning Workshop 230/ 500

Participants Aaron White Abdelwadoud maameri Abdessamie Chelli Abdollah Mohammadi Adam Christopher Elwood

2-100, Lawrence Berkeley Nation L. Adriano Di Florio . afifaboubia .° Aishik Ghosh . Alessandro Bertolin .° AlexWang . Alexander Melzer
Jets and ML in CMS (30'+15')

Trackers 20/ 919 H%EA%&J( DﬂTS 20
6“‘— 9" March 2017, LAL-Orsay, France zo-zzmzms

éoster - earnil
Home contact us nce, Israe ConneCtlng The DOTS 201 8

With the parallel progress in pattern recognition algorithms and microelectronic T

technology, the design and performance of tracking detector is rooted in the solid Lodging University of Washington Seattle
interplay of hardware and software : sensors, readout and trigger electronics, online and US/Pacic imezone

offline reconstruction software. The main focus of the workshop is on pattern recognition
Registration and machine learning algorithms devoted to the reconstruction of particle tracks or jets in Travel to Orsay v
high energy physics experiments, and the hardware developments that enable them.

Committees

This is a workshop on track reconstruction and other problems in pattern recognition in sparsely
Scientific Programme sampled data. The workshop is intended to be inclusive across other disciplines wherever similar
This 2017 edition is a merger of the Connecting The Dot series (see CTD2015 Berkeley, , Timetable problems arise. The main focus will be on pattern recognition and machine learning problems that

Participants ) X . . Social events arise e.qg. in the reconstruction of particle tracks or jets in high ener hysics experiments.
P CTD2016 Vienna ) with the Workshop on Intelligent Tracker series (see WIT2010 Seattle tracking hackathon 9 P ) g o Py v

Berkeley, WIT2012 Pisa, WIT2014 Penn). TrackML hackathon This 2018 edition is the 4th of the Connecting The Dot series (see CTD2015 Berkeley, CTD2016
registration Vienna, WIT/CTD2017 LAL-Orsay)
The workshop will be plenary sessions only, with a mix of invited talks and accepted . Registration

contributions. ) Participant List

The workshop is plenary sessions only, with a mix of invited talks and accepted contributions. There
will also be a Poster session.

Registration are closed Contribution List
1e Learning and Videoconference Rooms

Wifi is available on site, eduroam credentials, from your institution or CERN, are recommended (but
not mandatory).

ficcommodations Foll i dwit , the official hash #ctd2018
1lel ollow us on twitter @ctdwit, the official hashtag is #ct 3.
nd Nalls' Transportation

[’A[)lS

S Weizmann Institute of Science

&P o == &’ a B e or bata science bring together particle physicists and machine learning Sl i d e Sto | en fro m
allenges posed by high-energy physics data analysis Scientific Committee

problems. While some of these problems are simply waiting to be matched with well- K C

established techniques (the pairing of hammers and nails), many require or inspire the Kyle Cranmer ran m er

MINUTES



Summary

e [he use of ML has become ubiquitous iIn HEP. Many common classification
and regression tasks already performed by ML-based algorithms.

® Deep learning is starting to make an impact, first with HEP problems that are
closely related to those commonly solved using DL—but we're now moving
towards a producer phase (rather than just consumer) in HEP.

e Systematics are vital in HEP. Our field is developing systematics aware ML
algorithms—and has become adept at characterizing black boxes.

e Beyond the issue of systematics, our data/problems have other interesting
features from a CS perspective: sparse data, irregular detector geometries,
heterogeneous information, physical symmetries and conservation laws, etc.

e Finally, there is a lot of exciting cutting-edge work | did not have time to
discuss, e.qg., Deep Kalman Filters, jet tagging using RNNs, deep NNs are
now running on FPGASs, automatic anomaly detection, etc.



